
Virtual Kubelet

Overview

StackPath's Virtual Kubelet provider allows you to leverage the power of Kubernetes (K8s) to
seamlessly deploy and manage your applications across StackPath's expansive Edge Compute
network from the control plane of your choice, increasing scalability and reliability, while
decreasing latency.

This feature enables you to use the Kubernetes control plane to create and manage pods as you
normally would, without having to worry about managing your own hardware and
infrastructure, as StackPath's Virtual Kubelet provider takes care of scheduling these pods for
you on our Edge Compute nodes.

This guide will explain how to create and configure StackPath Edge Compute containers using
Virtual Kubelet.

Key Features

• Volumes using csi. Mount volumes in your pods using the csi volume type with the
driver virtual-kubelet.storage.compute.edgeengine.io.

• Environment variables. Set environment variables for your pods using the
Kubernetes env field in your pod specification.

• Instance size selection. Specify resource requirements for your pods using the
Kubernetes resources field in your pod specification.

• Startup, liveness and readiness probes.
Configure startup, liveness and readiness probes for your pods using the
Kubernetes livenessProbe and readinessProbe fields in your pod specification.

• Private images using image pull secrets. Use Kubernetes image pull secrets to
securely pull private container images from a registry using the
Kubernetes imagePullSecrets field in your pod specification.

Getting Started

The following are required before you can start using the StackPath Edge Compute Virtual
Kubelet provider:

• A Kubernetes cluster. This is where you will be configuring Virtual Kubelet.
• A StackPath account
• API Credentials

https://support.stackpath.com/hc/en-us/articles/360037680972
https://stackpath.dev/docs/stackpath-api-authentication

Creating a Virtual Kubelet Pod

The instructions below explain how to deploy a Kubernetes deployment for StackPath's Virtual
Kubelet Provider using Kustomize.

Usage

1. Confirm that Kustomize is installed in your environment by running the kustomize
version command. If you haven't already installed Kustomize, follow the
instructions here.

To find the Kustomize version embedded in recent versions of kubectl, run kubectl
version:

kubectl version --short --client
Client Version: v1.26.0
Kustomize Version: v4.5.7

2. Clone this repository to your local environment.
3. Navigate to the base directory, which contains the base Virtual Kubelet deployment:

bash cd deployment/kustomize/base

4. Follow this guide to obtain StackPath API credentials and update
the config.properties file with your StackPath account, Stack, client, and secret IDs:

SP_STACK_ID = {your-stack-id}
SP_CLIENT_ID = {your-client-id}
SP_CLIENT_SECRET = {your-client-secret}

5. To deploy the Virtual Kubelet resources, run the following command:

kubectl apply -k

This will create the Virtual Kubelet deployment in your Kubernetes cluster. Please
note that a secret will be generated from the config.properties file specified in
the secretGenerator section of the kustomization.yaml file. This secret contains the
values of the environment variables specified in the config.properties file.

Updating Resources

To customize the Virtual Kubelet deployment, create an overlay directory (vk-deployment-
updated in this example) within the overlays directory with a kustomization.yaml file that
specifies the changes you want to make:

https://kubectl.docs.kubernetes.io/installation/kustomize/
https://stackpath.dev/docs/stackpath-api-authentication

.
├── base
│ ├── cluster-role.yaml
│ ├── config.properties
│ ├── kustomization.yaml
│ ├── namespace.yaml
│ ├── service-account.yaml
│ └── vk-deployment.yaml
└── overlays
 └── vk-deployment-updated
 └── kustomization.yaml

Create the following kustomization.yaml file under the overlay directory to create a Virtual
Kubelet in a namespace other than the default one while updating the values
of SP_CITY_CODE and SP_STACK_ID environment variables. We will be using sp-atl as the
location for this example:

resources:
- ../../base

namespace: sp-atl

images:
- name: stackpath.com/virtual-kubelet
newTag: 0.0.2

configMapGenerator:
- name: sp-vk-location
behavior: replace
literals:
- SP_CITY_CODE=ATL

secretGenerator:
- name: sp-vk-secrets
behavior: merge
literals:
- SP_STACK_ID= <another_stack_id>

• resources references the base resources that are inherited by this overlay, which
includes a default Virtual Kubelet deployment configuration.

• namespace specifies that the Virtual Kubelet deployment will be created in the sp-
atl namespace.

• images is used to define the version of the StackPath Virtual Kubelet image to be
used.

• configMapGenerator replaces the existing value of SP_CITY_CODE with ATL, which
specifies the geographic location of the Edge Compute infrastructure.

• secretGenerator merges the existing config.properties file with a
new SP_STACK_ID value of <another_stack_id>. This updates the StackPath Stack ID
specified in config.properties.

To deploy overlay, run the following command:

kubectl apply -k overlays/vk-deployment-updated

Creating a Workload

Now that you've created a Virtual Kubelet pod using the steps above, you're ready to move on
to the next step. Once this pod is running, you can then create a standard pod and StackPath
workload.

To use the Virtual Kubelet deployment to deploy workloads in the StackPath Edge Compute
infrastructure, configure your pods to use the virtual-kubelet.io/provider toleration and type:
virtual-kubelet node selector.

Here is an example configuration that will create the simplest possible container in the sp-
atl namespace by providing only a name (my-pod) and image (my-image):

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
 namespace: sp-atl
spec:
 containers:
 - name: my-container
 image: my-image
tolerations:
 - key: virtual-kubelet.io/provider
 operator: Equal
 value: stackpath
 effect: NoSchedule
nodeSelector:
 kubernetes.io/role: agent
 type: virtual-kubelet

You can customize your workload by adding more configurations under the specs field, as if you
were using the StackPath API.

Here is what a more standard workload configuration's YAML file would look like:

apiVersion: v1
kind: Pod
metadata:
 name: webserver
 namespace: vk-sp
spec:
 containers:
 - name: webserver
 image: nginx:latest
 args:
 - "example1"
 - "example2"
 command:
 - "nginx"
 ports:
 - name: http
 containerPort: 80
 - name: https
 containerPort: 443
 env:
 - name: VAR
 value: val
 resources:
 requests:
 memory: "1Gi"
 cpu: "250m"
 limits:
 memory: "4Gi"
 cpu: "2"

 volumeMounts:
 - mountPath: "/disk-1"
 name: volume-1
 livenessProbe:
 tcpSocket:
 port: 80
 initialDelaySeconds: 5
 periodSeconds: 10
 readinessProbe:
 httpGet:
 path: /
 port: 80

 httpHeaders:
 - name: Custom-Header
 value: Custom
 initialDelaySeconds: 5
 periodSeconds: 10
 successThreshold: 2
 timeoutSeconds: 10
 failureThreshold: 1

 volumes:
 - name: volume-1
 csi:
 driver: virtual-kubelet.storage.compute.edgeengine.io
 volumeAttributes:
 size: "2Gi"

 tolerations:
 - key: virtual-kubelet.io/provider
 operator: Equal
 value: stackpath
 effect: NoSchedule
 nodeSelector:
 kubernetes.io/role: agent
 type: virtual-kubelet

Using the example above, let's create a workload. The name of our YAML file
is my_example_pod.yaml. It's located in our sp/testing folder. Using kubectl, run the following
command:

kubectl apply -f sp/testing/my_example_pod.yaml
This command creates a Virtual Kubelet container workload using the configuration defined in
our YAML file.

Validating our Workload

We can confirm that this workload has been created and is running properly by checking either
of the following:

• The Edge Compute Dashboard in StackPath Control
Portal:

• Get all workloads via the StackPath API. Retrieve the appropriate workload ID and use

it to get our workload's detailed information.

Enabling Remote Management for Pods

To enable remote management for pods, you can use
the workload.platform.stackpath.net/remote-management annotation in the pod definition
metadata. By setting this annotation to true, the remote management capabilities for the
containers listed in the pod will be enabled.

To enable remote management, add the following annotation to your pod definition metadata:

annotations:

workload.platform.stackpath.net/remote-management: "true"

By default, if this annotation is not provided or set to "false", remote management will be
disabled.

For more information on Edge Compute Workload Metadata and other terms related to
StackPath Edge Compute, please refer to Learn Edge Compute Terms.

Enabling remote management should be done with caution and only for trusted pods or in
controlled environments where appropriate security measures are in place.

Limitations

StackPath Edge Compute currently supports eight instance types: SP-1 through SP-8. Our
Kubernetes provider will launch the smallest instance that provides the resources defined in the
pod specification YAML file (within the resources parameter). If the pod specification requires
more resources than what is available in the SP-8 instance, the provider will provision the SP-8
instance type.

https://stackpath.dev/reference/getworkloads
https://stackpath.dev/reference/getworkload
https://support.stackpath.com/hc/en-us/articles/360059500391-Learn-Edge-Compute-Terms

Here are the specifications for each of the available instance types:

Subscription Cores RAM

SP-1 1 2GiB

SP-2 2 4GiB

SP-3 2 8GiB

SP-4 4 16GiB

SP-5 8 32GiB

SP-6 16 64GiB

SP-7 32 128GiB

SP-8 48 256GiB

Supported PodSpec File Fields

The following is a comprehensive list of supported fields in the PodSpec file when using
StackPath's Virtual Kubelet Provider for Edge Compute:

• shareProcessNamespace: Allows multiple containers in a pod to share the same
process namespace.

• hostAliases: Specifies custom host-to-IP mappings for the pod.
• dnsConfig: Configures DNS settings for the pod.
• securityContext: Defines security-related settings for the containers in the pod,

including permissions and access levels.
• runAsUser: Specifies the user ID that runs the container.
• runAsGroup: Specifies the primary group ID of the container.
• runAsNonRoot: Ensures that the container does not run as root.
• supplementalGroups: Lists additional group IDs applied to the container.
• sysctls: Configures kernel parameters for the container.

• containers: Specifies the main containers in the pod.
• name: Specifies the name of the container.
• image: Specifies the container image.
• command: Specifies the command to be run in the container.
• args: Specifies the arguments to be passed to the container command.
• ports: Configures ports for the container.
• env: Sets environment variables for the container.
• resources: Specifies the resource requirements and limits for the

container.
• securityContext (Container-specific):

• runAsUser: Specifies the user ID that runs the container.
• runAsGroup: Specifies the primary group ID of the container.

• runAsNonRoot: Ensures that the container does not run as
root.

• allowPrivilegeEscalation: Allows privilege escalation for the
container.

• capabilities: Specifies Linux capabilities for the container.
• volumeMounts: Mounts volumes into the container.
• startupProbe: Configures the startup probe for the container.
• livenessProbe: Configures the liveness probe for the container.
• readinessProbe: Configures the readiness probe for the container.
• lifecycle:

• postStart: Executed after the container starts.
• preStop: Executed before the container is terminated due to

any reason.
• imagePullPolicy: Specifies when to pull the container image (we currently

support Always and IfNotPresented)
• workingDir: Sets the working directory inside the container.
• terminationMessagePath: Specifies the path to the container termination

message.
• terminationMessagePolicy: Specifies how the termination message

should be populated.
• initContainers: Defines one or more containers that should run before the main

containers in the pod (supports same fields as containers)
• volumes: Configures volumes to be used in the pod.

